Data Science with Jupyter

Lessons
Lab
TestPrep
AI Tutor (Add-on)
Get A Free Trial

About This Course

Skills You’ll Get

1

Preface

2

Data Science Fundamentals

  • What is Data?
  • What is Data Science?
  • What a Data Scientist actually do? 
  • Real world use cases of Data Science?
  • Why Python for Data Science?
  • Conclusion
3

Installing Software and Setting Up

  • System Requirements
  • Downloading the Anaconda
  • Installing the Anaconda in Windows 
  • Installing the Anaconda in Linux
  • How to install a new Python library in Anaconda
  • Open your notebook- Jupyter
  • Know your notebook 
  • Conclusion
4

Lists and Dictionaries

  • What is list?
  • How to create a list?
  • Different list Manipulation operations
  • Difference between lists and tuples
  • What is dictionary?
  • How to create a dictionary?
  • Some operations with dictionary
  • Conclusion
5

Function and Packages

  • Help() function in Python
  • How to import a Python package?
  • How to create and call a function?
  • Passing parameter in a function
  • Default parameter in a function
  • How to use unknown parameters in a function?
  • Global and Local variable in a function
  • What Is Lambda Function?
  • Understanding Main in Python
  • Conclusion
6

NumPy Foundation

  • Importing a NumPy package
  • Why NumPy array over List?
  • NumPy array Attributes
  • Creating NumPy arrays
  • Accessing element of a NumPy array
  • Slicing in NumPy array
  • Array Concatenation
  • Conclusion
7

Pandas and DataFrame

  • Importing Pandas
  • Pandas Data Structures
  • .loc[ ] and .iloc[ ]
  • Some Useful DataFrame Functions
  • Handling missing values in DataFrame
  • Conclusion
8

Interacting with Databases

  • What is SQLALchemy?
  • Installing SQLALchemy Package
  • How to use SQLAlchemy?
  •  SQLAlchemy Engine Configuration
  • Creating A Table In Database
  • Inserting Data In a Table
  • Update a record
  • How to join two tables
  • How to join two tables
  • Conclusion
9

Thinking Statistically in Data Science

  • Statistics in Data Science
  • Types of Statistical data/variables?
  • Mean, Median and Mode
  • Basics of Probability
  • Statistical Distributions
  • Pearson Correlation Coefficient
  • Probability Density Function (PDF)
  • Real World Example
  • Statistical Inference and Hypothesis Testing
  • Conclusion
10

How to import data in Python?

  • Importing txt data
  • Importing csv data
  • Importing Excel data
  • Importing JSON data
  • Importing pickled data
  •  Importing a compressed data
  •  Conclusion
11

Cleaning of Imported Data

  •  Know your data
  •  Analysing Missing Values
  •  Dropping Missing Values
  • Automatically Fill Missing Values
  •  How to scale and normalize data?
  •  How to Parse Dates?
  • How to apply character encoding?
  • Conclusion
12

Data Visualization

  • Bar Chart
  • Line Chart
  •  Histograms
  •  Scatter Plot
  •  Stacked Plot
  •  Box Plot
  • Conclusion
13

Data Pre-processing

  •  About the case-study
  •  Importing the dataset
  • Exploratory Data Analysis
  •  Data Cleaning & Pre-processing
  •  Feature Engineering
  •  Conclusion
14

Supervised Machine Learning

  • Some common ML Terms
  • Introduction to Machine Learning (ML)
  • List of common ML Algorithms
  • Supervised ML Fundamentals
  • Solving a Classification ML Problem
  • Solving a Regression ML Problem
  • How to Tune your ML Model?
  • How to handle categorical variable in sklearn?
  • Advanced technique to handle missing data
  • Conclusion
15

Unsupervised Machine Learning

  •  Why Unsupervised Learning?
  • Unsupervised Learning Techniques
  • Clustering
  • Principal Component Analysis (PCA)
  • Case Study
  • Validation of Unsupervised Ml
  • Conclusion
16

Handling Time-Series Data

  • Why Time-Series is important?
  •  How to handle Date and Time?
  •  Transforming a Time Series Data
  •  Manipulating a Time Series Data
  • Comparing Time Series Growth Rates
  •  How to change Time Series Frequency?
  • Conclusion
17

Time-Series Methods

  • What is Time-Series forecasting?
  • Basic Steps in Forecasting
  •  Time Series Forecasting Techniques
  • Forecast future traffic to a Web page
  • Conclusion
18

Case Study-1

  • Case Study 1: Predict whether or not an applicant will be able to repay a loan
  • Conclusion
19

Case Study-2

  • Conclusion
20

Case Study-3

21

Case Study-4

Data Science with Jupyter

$ 378.06

Buy Now

Related Courses

All Course
scroll to top